
LLNL-TR-499074

Software Construction and Composition
Tools for Petascale Computing SCW0837
Progress Report

T. G. W. Epperly, L. Hochstein

September 13, 2011

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Software Construction
and Composition Tools

for Petascale Computing
SCW0837

Progress Report

A Progress Report Submitted to the DOE Office of Science
Program Announcements: LAB 08-19 and DE-PS02-08ER08-19

Program Area: Software Development Tools for Improved Ease-of-Use of Petascale Systems
Program Office: Office of Advanced Scientific Computing Research

Technical Contact: Sonia Sachs

Investigators
Thomas Epperly, PI Lawrence Livermore National Laboratory
Lorin Hochstein USC Information Sciences Institute

Contents

Abstract 2

1 Introduction 3

2 Research Objectives 4
2.1 Empirical Software Engineering Evaluation . 4

2.1.1 Goals . 4
2.1.2 Estimating build overhead . 5

2.1.2.1 Code volume . 5
2.1.2.2 Version control activity . 6
2.1.2.3 Automated regression tests . 7
2.1.2.4 Mailing list activity . 7
2.1.2.5 Summary of results . 7

2.2 MixDown for Building Third-party Software Libraries . 8

3 Ongoing Research Objectives 13
3.1 Details of build-related changes . 13
3.2 MixDown evaluation . 13
3.3 Other areas . 13

4 Results 14

5 Products 15

6 Conclusions 16

7 Bibliography 17

1

Abstract

The majority of scientific software is distributed as source code. As the number of library dependencies and
supported platforms increases, so does the complexity of describing the rules for configuring and building
software. In this project, we have performed an empirical study of the magnitude of the build problem by
examining the development history of two DOE-funded scientific software projects. We have developed
MixDown, a meta-build tool, to simplify the task of building applications that depend on multiple third-
party libraries. The results of this research indicate that the effort that scientific programmers spend takes a
significant fraction of the total development effort and that the use of MixDown can significantly simplify
the task of building software with multiple dependencies.

2

1. Introduction

The goal of this project has been to perform research and development to understand and address the chal-
lenges of configuring and building scientific libraries and applications for petascale computer systems and
beyond. Our work has had two main thrusts. First, we performed empirical studies of existing applications
that run on petascale systems in order to characterize the scope and nature of the build challenge faced by
scientists. Second, we have worked on MixDown, a tool to simplify the compilation of multiple third party
libraries involving several build toolsets.

The motivation for this project came out of our experience at Common Component Architecture [1]
coding camps where configuration and build problems seemed to dominate the time spent getting codes
to work together. These coding camps were designed to help people combine libraries and applications
together to achieve new scientific capabilities using the CCA. Typically, these camps were scheduled for
5 days, and we would spend 3 days getting all required software to build on a shared machine. The time
required to edit source code to add calls between libraries and applications was relatively short compared
to the configuration and build challenge. This experience demonstrated that building all the required third
party libraries required for an application is a major challenge even when representatives of each library
are present. Our experience across multiple projects suggests that configuration and build is a sigificant
challenge associated with composing applications from multiple software libraries.

This project is a collaboration between the University of Southern California’s Information Sciences
Institute (ISI) and the Lawrence Livermore National Laboratory (LLNL). ISI’s focus has been on an em-
pirical software engineering study of the configuration and build problem, and LLNL’s focus has been on
developing MixDown.

Our original proposal was for $457K/year with $307K/year allocated to LLNL and $150K/year allocated
to ISI. Our actually funding levels were $260K/year for LLNL and $95K/year for ISI. Due to the reduction
in funding and changes in staffing, we had to reduce the scope of work performed. In particular at LLNL,
we were unable to staff this project with a postdoc, so we had to staff with a flexterm employee which results
in a higher cost to the project.

Due to our original funding arriving late in FY2009, we are roughly two-thirds of the way through our
project. Hence, this progress report covers our progress to date, and we anticipate continuing work through
FY2012.

The remainder of this report will focus on a summary of our research, results, future research objectives,
findings, products, and final conclusions.

3

2. Research Objectives

The complete configuration and build problem is too large for us to tackle in a project of this size, so we
focused on two critical parts of the overall problem: empirical software engineering measurements of the
problem and the third-party library build problem. The original proposal included work on a graphical
make debugger, but due to reduced funding and Gary Kumfert’s departure from LLNL, we do not expect to
complete that tool by the end of this project.

2.1 Empirical Software Engineering Evaluation

2.1.1 Goals

The goal of the empirical software engineering study of the build problem is to formalize the investigators’
sense that the configuration and build problem is a major drain of software development productivity and
an ignored source of errors, a phenomenon we refer to as the build tax. In our previous work developing
scientific applications and tools, the investigators had the sense that configuration and build were taking a
unexpectedly large part of the development effort. At one point in the development of Babel, we esimated
that the build and configuration work was taking 25% of our development effort. In some senses Babel
represents a worse-case situation because it involves so many computer languages and was expected to
produce static and shared libraries. Our experience with Babel led us to perform an informal survey of
developers in the DOE [2] and publish our experiences [3]. These experiences led us to pursue an empirical
study of the configuration and build problem.

In order to generate a more rigorous estimate of the effort associated with maintaining the build, we
performed a case study [4] of two computational science projects. While a study of two computational sci-
entific projects is not sufficient empirical data to generalize to the wider population of computational science
projects, our goal in focusing in detail on two projects was to gain insights into the role that maintaining
the build plays in the software development process of computational scientists and to provide quantitative
estimates on the impact of build effort that will serve as a reference point that can be used as a benchmark in
future research. In addition, we wanted to provide evidence of build-related challenges in order to motivate
the community to develop better build tools.

The first project is the FACETS project [5], a distributed computational science software project led by
Tech-X Corporation. The second is the Flash Center [6], a collocated computational science software project
based at the University of Chicago. The two codes have much in common: both incorporate simulations
thermonuclear reactions, both are written mostly in Fortran, both use the MPI message-passing library [7]
to exploit parallelism on HPC systems, and both project teams have access to unclassified HPC machines
located at U.S. Department of Energy (DOE) facilities. Both projects also had several software development
processes in common. Both projects use subversion as their version control system and have developed their
own custom regression testing solution. Each night, the test system executes numerous tests of code on
multiple machines and displays the results of the tests in a web interface.

In the literature, previous research on development effort in commercial software project has leveraged
change request data to estimate effort by using the length of time a change request is open. For example,
Eick et al. used this method to analyze code decay [8], and Herblseb and Mockus used this to analyze the
impact of distributed software development [9]. For our study, while both projects under investigation had
local installations of issue tracking tools, neither project consistently uses those tools for issue tracking.
Therefore,we could not rely on issue open/close dates to estimate effort. Instead, we analyzed other data

4

Research Objectives 2.1 Empirical Software Engineering Evaluation

from the software repositories that were generated naturally by the scientists as they developed the software.
The primary sources of data we used were source code, version control repositories, results of regression
testing systems, and mailing list acitvity.

2.1.2 Estimating build overhead

We estimated the overhead associated with maintaining a build script by looking at four metrics:

Code volume What fraction of the total lines of code were devoted to builds scripts.

Version control activity What fraction of the total amount of version control activity was associated with
modifying build scripts.

Automated regression tests How many tests failures in the automated regression tests are associated with
build-related issues.

Mailing list activity How much of the email traffic on mailing lists was related to build-related issues.

2.1.2.1 Code volume

To count lines of source code and classify by language, we used a customized version of the University of
Hawaii edition of SCLC [10].

We divided up the code into four categories:

Source Source files that are part of the simulation software itself, typically C/C++ and Fortran.

Build Source files associated with the build. Mostly make-related files, but may also include scripts.

Other Any source files that are not part of source or build. Typically associated with pre-processing input
files, post-processing data, or other utilities not related to building.

Unknown Any files where it was not obvious to the authors how to classify the file.

Figure 2.1 shows how the different categories of code are distributed throughout the FLASH directory
structure. Several of the build files are scattered about the repository (typically FlashConfig) files. There are
also two directories with a large number of build-related files: one that contains the custom Python-based
build system, and another that maintains a set of site-specific makefile parameters for different HPC systems
that FLASH has previously run on.

For our estimations, we need an operational definition of “build-related code”. Here, we adopt the
convention that if a file is used for the process of transforming the source code into an executable, and the
file is manually generated, then it is build-related. For both projects, we consider any hand-generated file
used by autotools to be a build file, such as:

• configure.ac

• aclocal.m4

• Makefile.h.in

• hand-crafted makefiles

5

Research Objectives 2.1 Empirical Software Engineering Evaluation

Figure 2.1: Treemap visualization of FLASH code. Green is source, red is build, blue is other, and orange
is uncertain

The data from source line counts provides a sense of how much build-related code is in the project, but
that analysis assumes that time spent on build-related issues is directly proportional to the amount of build-
related code. However, where some files will be touched infrequently, others will be modified many times
over the lifetime of the project. For example, it seems reasonable that build-related code does not require as
much modification over the lifetime of the project as source code because the build configuration does not
change as often as bugfixes and new code features.

2.1.2.2 Version control activity

An alternative way to measure the build overhead is to measure the amount of time that the developers spend
editing build-related code. While this cannot be directly measured in retrospect, we can estimate this value
using the version control history of the software. Both FACETS and FLASH use Subversion as their version
control system. To estimate the build overhead, we calculate the percentage of build-related commits.

Because individual commits can involve both build-related and non-build related source files, we use
both a conservative metric (consider only commits where every file involved was build-related), and a more
liberal metric (any commit that touch at least one build file is build-related).

6

Research Objectives 2.1 Empirical Software Engineering Evaluation

2.1.2.3 Automated regression tests

Both projects run daily automated tests using custom regression test systems. In the FLASH project, the
custom regression testing system is called FlashTest and is available for public download1. FlashTest runs a
suite of regression tests on different machine architectures and compilers each day and provides a publicly
accessible web interface which displays the results2. In the FACETS project, the regression testing system
is part of the Bilder system. Regression tests runs daily, and the team members are informed via email about
the results of the test. A web-based dashboard shows the results of builds on selected machines3.

2.1.2.4 Mailing list activity

Both the FACETS project and the Flash Center have mailing lists, although they use them differently. Be-
cause the FACETS team is a distributed project, email is an important communication tool for coordination.
The FACETS project uses a private developer mailing list, which serves two purposes:

• General communication across members

• Reporting the results of daily automated tests.

We leveraged the mailing list as another source of data for estimating the amount of developer effort
spent on build issues. If we assume that the number of emails on build-related issues is proportional to the
amount of effort spent on build-related issues, then we can use the emails as another metric to estimate build
overhead.

The challenge in using the emails to estimate build effort is to identify which ones are related to build-
related issues. While we considered simple approaches such as looking for related keywords (e.g., compile,
makefile), we decided to use manual inspections of a sample of the data.

Two researchers independently examined and classified all non-automated emails in the two mailing
lists from May 1, 2010 to May 31, 2010 and identified which ones were build related, and then measured
the inter-rater agreement using the Kappa statistic [11]. It was relatively high for FLASH (0.86) but low for
FACETS (0.39), which indicates that it was more difficult to make a subjective judgment about whether a
particular discussion on the mailing list was build related in the case of FACETS.

2.1.2.5 Summary of results

Table 2.1 summarizes the estimates of build overhead using the four different metrics we examined, ordered
from smallest to largest estimates.

Table 2.1: Estimated build overhead by metric
FACETS FLASH

Lines of code 6% 5%
Mailing list 13–20% 8–10%
Regression tests 11–30% 13–47%
Version control repository 58–65% 19–37%

Note the large variation in estimates across the different metrics, with lines of code being both the small-
est and the simplest to measure. Only a small fraction of the codebase is made up of build-related scripts,

1http://flash.uchicago.edu/web/index.php/testing.html
2http://flash.uchicago.edu/website/testsuite/
3https://orbiter.txcorp.com/BilderDashboard/facets/

7

Research Objectives 2.2 MixDown for Building Third-party Software Libraries

which was consistent with estimates given to us by developers on each of the projects before we began our
analysis. Based on mailing list traffic, the estimate roughly doubles or triples. However, the estimates are
significantly larger when examining regression tests or commits to the version control repository.

What was particularly surprising was the discrepancy between lines of code and version control repos-
itory: we expected results to be similar here. However, these results suggest that build scripts are modified
much more often than one would expect given the small fraction of overall code that they represent. Even
though the FLASH project has much fewer external dependencies than FACETS, about a fifth to a third of
the code files committed were build-related.

Each metric gives an incomplete view of the total development effort. In addition, because of the large
spread in these metrics, it is difficult to identify a point estimate, or even an interval. However, given that
the source line of code estimates are consistent with developer estimates, and are at the low range of the
scale, these results suggest that the project developers underestimate the overall project time spent dealing
with build-related issues.

Feedback from the developers suggests that the single biggest driver for build issues is the need to
support the so-called Leadership Class Facilities. These are the large, one-of-a-kind supercomputers that
occupy the upper echelons of the Top 500 list of supercomputers4. Such machines offer the highest level of
performance, but at a cost. Often, such machines require cross-compilation, which adds an additional level
of complexity. The associated non-standard installations, use of compiler scripts, and frequent software
upgrades makes maintaining stable builds on leadership machines a challenge for code teams.

2.2 MixDown for Building Third-party Software Libraries

The goal of this research thrust is to design, implement, and evaluate a new tool to orchestrate the config-
uration and building of third-party libraries for a software application. This class of tools has come to be
known as a meta-build system. Other examples of meta-build systems includes bilder [12], Contractor [13],
and waf [14]. The fact that several similar tools have been created in the recent past shows that this is a
problem that requires a solution.

In home and office computing, software is exchanged primarily in binary format — as compiled machine
code or collections of bytecode that run in a virtual machine (e.g., Java or .Net). Windows, Java, and .Net
all provide component frameworks that allow binary components to be combined into arbitrarily into hybrid
applications. For example, putting an Excel graph into a Word document is creating a hybrid application
with components from Excel and Word working together.

For several reasons, software is exchanged in source code form in the scientific and high performance
computing community. Because of the importance of high performance, it is important to compile the
software to make the best use of the available hardware. Often compilers can improve performance when
compiling for a particular machine rather than compiling for a general class of machines. Some parts of the
software may depend on the type of processing cores, the type of accelerators available, and the particular
networking hardware. Leadership computing facilities are often cross-compile environments where partic-
ular versions of the compilers and system libraries must be used. It is not reasonable to expect a library
provider to have access to all the different systems for which binary packages would be required. Even
though much of the community has standardized on Linux, there are still multiple varieties of Linux, and a
developer cannot easily make a binary package that will install everywhere.

Because software is exchanged in source form, a computational scientist who wishes to synthesize
applications from a collection of community written tools must configure and install the third-party libraries
in addition to his own software. Sometimes these libraries are already installed on the system. For example,
most supercomputers have a vendor-optimized MPI preinstalled. In many cases, the computational scientist

4http://www.top500.org

8

Research Objectives 2.2 MixDown for Building Third-party Software Libraries

may choose to ignore the preinstalled software and choose to install all their dependencies from scatch to
avoid the possiblity of incorrect software versions or inconsistent build parameters.

The role of a meta-build system is to take a collection of software libraries and applications from source
code form to their compiled and runnable format with a consistent set of compilers and flags to produce
a correct, fast build. The meta-build system should manage dependencies between software packages to
ensure that dependencies are installed before packages that require them. The key distinction between a
meta-build system and a build system is that the meta-build system manages things at a package level. It
assumes that each package has its own configuration and build system.

Our system, MixDown, will default to an eight step process for each library or application. The default
list of steps is fetch, unpack, patch, preconfig, config, build, install, and clean. The list of steps can be
customized and some steps can be empty for some packages. For example, the patch step is only used
when the scientific application requires a modified verison of the distributed library. Each of these steps is
explained below:

fetch download the third party package from a web server, Subversion repository, GIT repository, Mercurial
repository, or filesystem.

unpack if the software package is in an archive such as .zip, .tar, .tar.bz2, etc., this step will
extract the software package from its archive in a build area

patch apply a small change to the unpacked source usually using the Unix utility patch or a simple shell
script

preconfig some packages require a tool to generate the configuration script

config execute the configuration script which automatically determines machine specific information needed
to compile the software package

build invoke the packages build tool which applies compilers to source code to create the final, usable form
of the library or application

install this directs the package to install its end-use files into a directory where other packages can refer-
ence/use them.

clean this removes temporary files created during the other steps of the process

In addition to managing the stages of each individual packages transformation to end-use form, Mix-
Down manages the dependencies between packages. By analyzing the dependency graph, MixDown can
determine the proper ordering of packages and identify which packages can be configured and built concur-
rently. Figure 2.2 shows the dependencies between packages required to build the Subversion source code
repository system. This shows that apr-util must be built first. Then apr, neon, and sqlite can be
built in parallel. Followed last by Subversion itself.

To improve the ease of adoption for MixDown, we developed a system to analyze a collection of archives
(.zip or .tar files) and/or URIs to automatically generate an initial MixDown project file. Our aim
was to develop heuristics that would get most of the MixDown project file correct for projects that follow
common practices; it is impossible to develop something that could correctly handle packages that are
designed contrary to common practice. The MixDown file may require some hand editing to correct rules
or dependencies.

The MixDown project file is one of the key user facing aspects of the tool, and we have tried to make
the project file simple and clean for the average case. Figure 2.3 shows a MixDown project file for the

9

Research Objectives 2.2 MixDown for Building Third-party Software Libraries

neonapr sqlite

apr-util

svn

Figure 2.2: Graph showing the dependencies for the packages required for the Subversion source code
repository system

Subversion source code repository. For complex situations, the software developer has the option to over-
ride MixDown’s default stages and behavior. In the MixDown project file, the eight step process can be
reordered, augmented, or reduced. In our experience, there are always situations where a simple approach
cannot handle the reality of what a build system must do, so developers can direct MixDown to use a custom
Python script to implement one or more of the steps for a given software package. This gives the developer
the flexibility to do almost anything as part of the build/install when necessary. In the Subversion input file,
the Preconfig rule for apr shows an example of a call to native Python code which is show separately
in Figure 2.4.

We have tested MixDown with a large list of open source programs including several DOE packages.
MixDown’s automatically generated input file successfully built NWChem [15], PETsc [16], Sundial [17],
Virtual Box [18], OpenFOAM [19], Gimp [20], Thunderbird [21], Firefox [22], MySQL [23], Deal II [24],
NTL [25], CLHEP [26], and Hmmmer [27]. We have also tested it with GCC, Quantum ESPRESSO [28],
GAP [29], Madagascar [30], Randomlib [31], CMU Sphinx [32], SUNDIALS [17], VLC [33], AZTEC [34],
Freemat [35], Hypre [36], PyMOL [37], ScaLAPACK [38], TAO [39] and OpenFlower [40].

The next key part of MixDown is a database of settings for different machines. When compiling on
DOE leadership class machines, the build system must usually choose from a limited set of compiler and
use very particular build options. For example on NERSC’s franklin compiler, you have a choice between
PGI, Pathscale, Cray, and GNU compilers. All these compilers are invoked using Cray wrappers named
ftn, cc, and CC for the Fortran, C, and C++ compilers, respectively [41]. Each compiler choice has
recommended compiler settings. The MixDown database would have all these settings builtin.

At this point, we are designing the MixDown database. This design incorporates the file format for
recording information, the way information is organized, and how MixDown determines which combina-
tions of settings to use. After the design work is finished, we will populate the database with settings from
the DOE LCFs and other common machines.

10

Research Objectives 2.2 MixDown for Building Third-party Software Libraries

Name: subversion
Path: subversion-1.6.12.tar.bz2
DependsOn: apr,apr-util,neon,sqlite
Fetch: steps.fetch(pythonCallInfo)
Unpack: steps.unpack(pythonCallInfo)
Preconfig: ./autogen.sh
Config: ./configure $(_AutoToolsPrefix) $(_AutoToolsCompilers) --with-apr=$(_Prefix) \

--with-apr-util=$(_Prefix) --with-neon=$(_Prefix) --with-sqlite=$(_Prefix)
Build: make $(_MakeJobSlots)
Install: make $(_MakeJobSlots) install
Clean: make $(_MakeJobSlots) clean

Name: apr-util
Path: apr-util-1.3.10.tar.bz2
DependsOn: apr
Fetch: steps.fetch(pythonCallInfo)
Unpack: steps.unpack(pythonCallInfo)
Preconfig: ./buildconf
Config: ./configure $(_AutoToolsPrefix) $(_AutoToolsCompilers) --with-apr=$(_Prefix)
Build: make $(_MakeJobSlots)
Install: make $(_MakeJobSlots) install
Clean: make $(_MakeJobSlots) clean

Name: sqlite-autoconf
Path: sqlite-autoconf-3070500.tar.gz
Aliases: sqlite
Fetch: steps.fetch(pythonCallInfo)
Unpack: steps.unpack(pythonCallInfo)
Preconfig: autoreconf -i
Config: ./configure $(_AutoToolsPrefix) $(_AutoToolsCompilers)
Build: make $(_MakeJobSlots)
Install: make $(_MakeJobSlots) install
Clean: make $(_MakeJobSlots) clean

Name: neon
Path: neon-0.29.5.tar.gz
Fetch: steps.fetch(pythonCallInfo)
Unpack: steps.unpack(pythonCallInfo)
Preconfig: ./autogen.sh
Config: ./configure $(_AutoToolsPrefix) $(_AutoToolsCompilers)
Build: make $(_MakeJobSlots)
Install: make $(_MakeJobSlots) install
Clean: make $(_MakeJobSlots) clean

Name: apr
Path: apr-1.3.12.tar.bz2
Fetch: steps.fetch(pythonCallInfo)
Unpack: steps.unpack(pythonCallInfo)
Preconfig: svnSteps.aprPreconfig(pythonCallInfo)
Config: ./configure $(_AutoToolsPrefix) $(_AutoToolsCompilers)
Build: make $(_MakeJobSlots)
Install: make $(_MakeJobSlots) install
Clean: make $(_MakeJobSlots) clean

Figure 2.3: MixDown input file for the Subversion source code repository

11

Research Objectives 2.2 MixDown for Building Third-party Software Libraries

import socket, sys
from md import commands, utilityFunctions

def aprPreconfig(pythonCallInfo):
if socket.gethostname() == "myComputerHostName":

pythonCallInfo.logger.writeMessage("Skipping APR Preconfig step due to correct hostname found")
pythonCallInfo.success = True

else:
pythonCallInfo.logger.writeMessage("Running APR Preconfig step")
returnCode = utilityFunctions.executeSubProcess("autoreconf -i", pythonCallInfo.currentPath, pythonCallInfo.logger.getOutFd(), True)
if returnCode != 0:

pythonCallInfo.success = False
else:

pythonCallInfo.success = True

return pythonCallInfo

Figure 2.4: Custom Python code used for the Preconfig rule for the apr package

12

3. Ongoing Research Objectives

3.1 Details of build-related changes

One of the original goals of this work is to understand the nature, frequency, and severity of build problems.
We are currently working on developing and applying a categorization scheme to identify the key areas of
work in configuration and build. Based on analysis of the FLASH and FACETS code, we have developed
the following provisional categorization scheme:

1. Adding/Modifying flags

2. Adding/Modifying path or version of a library

3. Cosmetic changes to the build code

4. Adding a new build related file

5. Modifying the program flow

6. Adding/Modifying dependencies in the rules

We are in the process of analyzing the FLASH and FACETS code using this characterization scheme to
identify the types of changes.

3.2 MixDown evaluation

In the upcoming year, we plan to do usability studies of MixDown: collecting data on users interacting with
the tool in order to identify any problems with the existing interface.

We will also test MixDown on a variety of DOE LCFs to determine machine appropriate settings and
to verify its correctness. Our goal is to have settings available for the common DOE platforms at NERSC,
ANL, and ORNL. These evaluations may also identify required modifications.

We will also develop a means to store information about each package built. The installation of each
package should carry metadata about which compilers, settings, and software versions were incorporated
into a particular build. This information is crucial to reconstruct the software provenance of a particular
build. MixDown should produce information for each installed package using a standardized format.

3.3 Other areas

Since our initial proposal, there have been some shifts in build and configuration landscape. For example,
CMake [42] has emerged as a growing standard for DOE projects being supported by the ASC program and
Sandia National Laboratory. We should investigate whether there are particular challenges in CMake that
are not being addressed.

We will evaluate the make debuggers that are already available and discover if they can be extended.
We will investigate whether our ideas for graphical debugging can be incorporated in any of the existing
tools.

13

4. Results

The results from the two case studies suggest that, while looking only at lines of code associated with
build activity provides a modest estimate of build effort (5%), development effort metrics that are based on
developer activity provided significantly higher estimates of build overhead. Build overhead estimates from
the FACETS project estimates were higher than those for FLASH, most likely because the FACETS project
has more software dependencies.

We have tested MixDown on 24 Open Source projects. For 16 of those projects, the automatically
generated MixDown project file was sufficient to correctly build the project. These tests did not cover the
third-party library requirements for these package, but these results are still significant because it indicates
that the automatically generated project file is correct in two thirds of the cases.

14

5. Products

Here are out products and references on how to obtain them:

MixDown MixDown’s source code repository is maintained at https://github.com/tepperly/MixDown.
This provides open read-only access to everyone via the internet and read/write access to project con-
tributors.

MixDown Wiki The MixDown wiki, https://github.com/tepperly/MixDown/wiki provides
some information about MixDown, our use cases, and our design documents.

MixDown poster We presented a MixDown poster at a LLNL poster session for build/configure tools and
techniques.

ESEM paper We will present a paper at the IEEE International Symposium on Empirical Software Engi-
neering and Measurement (ESEM) on September 22-23, 2011 [43].

15

6. Conclusions

The results of this project show that the effort to maintain and build petascale computational science projects
is a significant fraction of total development effort. Assuming that future computational science projects
continue to be developed through composition of third party libraries, we expect this trend to continue.

The two projects that composed the current case studies both targeted homogeneous architectures exclu-
sively. Given current trends in heterogeneous architectures, we expect that complexity in the build process
to increase over the next several years. In particular, the trend toward cross-compilation for DOE Leadership
Class Facilities makes the configuration and build process more complex because the operating system run-
ning on the system where the developers work is dissimilar from the computation nodes where the parallel
code actually runs.

Meta-build tools solve one of the key problems facing scientific and high-performance computing by
managing the configuration, build, and installation of third-party libraries. Improvements in meta-build
tools and fundamental builds tools can manage aspects of the underlying complexity and improve developer
productivity.

16

7. Bibliography

[1] The Common Component Architecture, http://www.cca-forum.org/.

[2] G.K. Kumfert and T.G.W. Epperly, Software in the DOE: The Hidden Overhead of “The Build”,
Technical Report UCRL-ID-147343, Lawrence Livermore National Laboratory, 2002.

[3] P.F. Dubois, T. Epperly, and G. Kumfert, Why Johnny can’t build [portable scientific software], Com-
puting in Science & Engineering 5, 83 (2003).

[4] Robert K. Yin, Case Study Research: Design and Methods, Sage Publications, third edition, 2002.

[5] FACETS project, http://www.facetsproject.org.

[6] Flash Center, http://flash.uchicago.edu.

[7] J. J. Dongarra, S. W. Otto, M. Snir, and D. Walker, A message passing standard for MPP and worksta-
tions, Communications of the ACM 39, 84 (1996).

[8] Stephen G. Eick, Todd L. Graves, Alan F. Karr, J. S. Marron, and Audris Mockus, Does Code Decay?
Assessing the Evidence from Change Management Data, IEEE Transactions on Software Engineering
27, 1 (1998).

[9] James D. Herbsleb and Audris Mockus, An Empirical Study of Speed and Communication in Globally-
Distributed Software Development, IEEEE Transactions on Software Engineering 29 (2003).

[10] SCLC (Source Code Line Counter), http://code.google.com/p/sclc.

[11] Jean Carletta, Assessing Agreement on Classification Tasks: The Kappa Statistic, Computational
Linguistics 22 (1996).

[12] James Cary, Bilder, available as part of the FACETS project.

[13] James F. Amundson, Contractor v1.0 documentation, http://home.fnal.gov/˜amundson/tmpcontractor/index.html.

[14] waf: The meta build system, http://code.google.com/p/waf/.

[15] M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma, H.J.J. van Dam, D. Wang,
J. Nieplocha, E. Apra, T.L. Windus, and W.A. de Jong, NWChem: a comprehensive and scalable open-
source solution for large scale molecular simulations, Computer Physics Communications (2010).

[16] Barry Smith, Portable, Extensible Toolkit for Scientific Computation (PETSc),
www-unix.mcs.anl.gov/petsc/petsc-as/.

[17] SUNDIALS (SUite of Nonlinear and DIfferential/ALgebraic equation Solvers),
http://acts.nersc.gov/sundials.

[18] VirtualBox, http://www.virtualbox.org.

[19] OpenFOAM, http://www.openfoam.com.

[20] The GNU Image Manipulation Program, http://www.gimp.org.

17

Bibliography

[21] Mozilla Thunderbird, http://www.mozilla.org/thunderbird/.

[22] Mozilla Firefox, http://www.mozilla.org/firefox/.

[23] MySQL, http://www.mysql.com/.

[24] deal.II: A Finite Element Differential Equations Analysis Library, http://www.dealii.org/.

[25] NTL: A Library for doing Number Theory, http://www.shoup.net/ntl/.

[26] CLHEP - A Class Library for High Energy Physics, http://proj-clhep.web.cern.ch/proj-clhep.

[27] HMMER3: a new generation of sequence homology search software, http://hmmer.janelia.org/.

[28] Quantum ESPRESSO, http://www.quantum-espresso.org/.

[29] GAP - Groups, Algorithms, Programming - a System for Computational Discrete Algebra,
http://www.gap-system.org/.

[30] Madagascar, http://www.ahay.org.

[31] Randomlib, http://randomlib.sourceforge.net.

[32] CMU Sphinx: Open Source Toolkit for Speech Recognition, http://cmusphinx.sourceforge.net.

[33] VLC media player, http://videolan.org/vlc.

[34] Aztec: A Massively Parallel Iterative Solver Library for Solving Sparse Linear Systems,
http://www.cs.sandia.gov/CRF/aztec1.html.

[35] FreeMat, http://freemat.sourceforge.net/.

[36] hypre, https://computation.llnl.gov/casc/hypre/software.html.

[37] PyMOL, http://pymol.org/.

[38] ScaLAPACK, http://www.netlib.org/scalapack/.

[39] The Toolkit for Advanced Optimization (TAO).

[40] OpenFlower, openflower.sourceforge.net.

[41] Compiling Codes on Franklin and Hopper, http://www.nersc.gov/users/computational-
systems/hopper/programming/compiling-codes/.

[42] Ken Martin and Bill Hoffman, Mastering CMake, Kitware, Inc., 2010.

[43] Lorin Hochstein and Yang Jiao, The cost of the build tax in scientific software, in Proceedings of
the the IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM
’11), 2011.

18

